SYMBOLS AND ABBREVIATIONS

The following list some symbols and abbreviations used in the course. Do not attempt to memorize them now! Their meaning and uses will become obvious as the course progresses.

DWL Design water line FP or F_P Forward perpendicular

Midships

AP or A_P Aft perpendicular

LPP or L_{PP} Length between perpendiculars (ft)

LOA Overall length (ft)

K Keel D Depth (ft) Т Draft (ft) T_{fwd} Draft at FP (ft) T_{aft} Draft at AP (ft) Mean Draft (ft) T_{m} $Trim = T_{aft} - T_{fwd} (ft)$ Trim δ_{Trim} Change in Trim Beam (ft) В G Centerline B Baseline

 A_{wp} or WPA Waterplane area (ft²) $A_{section}$ or A_{sect} Sectional Area (ft²)

Waterline

WL

 ∇ Submerged volume of the ship (ft³)

 $\Delta_{\rm S}$ Displacement (weight of the ship) (LT)

w weight of an object (LT)

(+ weight added, - weight removed)

G Center of Gravity of ship

(g = center of gravity for an object)

KG Distance from keel to the center of gravity of ship (ft)
Kg or kg Distance from keel to the center of gravity of any object (ft)

TCG Transverse Center of Gravity (Distance from the C to the Center of

Gravity) (ft) (+ stbd, - port)

Tcg or tcg Transverse center of gravity of any object (ft). Measured from the

centerline

LCG Longitudinal Center of Gravity (Distance from Longitudinal reference to

the Center of Gravity) (ft)

(+ fwd of midships, - aft of midships)

lcg Longitudinal center of gravity of object (ft)

F Center of Floatation

LCF Longitudinal Center of Floatation (ft)

(+ fwd of midships, - aft of midships)

TCF Transverse Center of Floatation (ft)

(+ *stbd*, - *port*)

B Center of Buoyancy

LCB Longitudinal Center of Buoyancy (ft)

(+ fwd of midships, - aft of midships)

TCB Transverse Center of Buoyancy (ft)

(+ *stbd*, - *port*)

KB or VCB Distance from keel to the center of buoyancy (ft)

M_T Transverse Metacenter M_L Longitudinal Metacenter

TPI Tons per inch immersion (LT/in)
MT1" Moment to trim one inch (ft-LT/in)

KM_L Distance from keel to longitudinal metacenter (ft) KM_T Distance from keel to transverse metacenter (ft)

GM_T Transverse Metacentric Height (distance from transverse metacenter to

Center of Gravity) (ft)

(+ M is above G, - M is below G)

BM_T Transverse Metacentric radius (ft)

φ angle of heel or list (degrees)

 θ angle of trim (degrees)

P Pressure (psi) ρ Density (lb-s²/ft⁴)

g Acceleration due to gravity

F_B Buoyant Force (LT)

 d_{fwd} Distance from FP to F (ft) d_{aft} Distance from AP to F (ft)

 δT_{PS} Change in draft due to parallel sinkage (ft)

 δT_{fwd} Change in draft forward (ft) δT_{aft} Change in draft aft (ft)

RM Righting moment (LT-ft)

GZ Righting arm (ft)

FSC Free surface correction (ft)

I_t Transverse Second Moment of Area (ft⁴)
I_L Longitudinal second moment of area (ft⁴)

GM_{eff} Effective Metacentric Height (ft)

σ stress (psi)

(Tensile-Compressive or Bending)

yield strength (psi) $\sigma_{\rm v}$

UTS Ultimate Tensile Strength (psi)

3 strain (in/in)

E Elastic Modulus or Young's Modulus or Modulus of Elasticity (psi)

elongation (in) е

VT Visual testing

PT Dye penetrant testing MT Magnetic particle testing Radiographic testing RT Ultrasonic testing UT

BHP Brake Horsepower (HP) Shaft Horsepower (HP) SHP **DHP** Delivered Horsepower (HP) Thrust Horsepower (HP) THP Effective Horsepower (HP) **EHP**

Hull Efficiency η_{H}

Propulsive Efficiency or Propulsive Coefficient η_P or PC

 R_{T} Total Hull Resistance (lb)

 V_{S} Ship Speed (ft/s)

Wetted surface area of the submerged hull (ft²) S C_{T} Coefficient of Total Hull Resistance (R_T)

 C_{V} Coefficient of Viscous Resistance

 $C_{\rm F}$ Coefficient of Skin Friction

Coefficient of Wave Making Resistance C_{W}

 C_A Correlation Allowance Reynolds Number R_n Froude Number F_n

Kinematic Viscosity (ft²/s) ν

K Form Factor Scale Factor λ

 V_A Speed of Advance (ft/s) $V_{\rm W}$ Speed of the Wake (ft/s) Propeller Efficiency $\eta_{propeller}$ Blade Area (ft²)

 A_0

Coefficient of Thrust Loading C_{t}

Frequency (rad/s) ω

 $\begin{array}{lll} \omega_n & \text{Natural frequency (rad/s)} \\ \omega_w & \text{Wave frequency (rad/s)} \\ \omega_e & \text{Encounter frequency (rad/s)} \\ \omega_{\text{heave}} & \text{Natural Heave frequency (rad/s)} \\ \omega_{\text{roll}} & \text{Natural Roll frequency (rad/s)} \\ \omega_{\text{pitch}} & \text{Natural Pitch frequency (rad/s)} \\ \end{array}$

T_{roll} Period of Roll (s)